EPA/600/P-00/001Ad March 2000 Draft Final www.epa.gov/ncea

Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds

Part I: Estimating Exposure to Dioxin-Like Compounds

Volume 4: Site-Specific Assessment Procedures

Exposure Assessment and Risk Characterization Group
National Center for Environmental Assessment - Washington Office
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC
DISCLAIMER

This document is a draft. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ABSTRACT

IV-ii March 2000

CONTENTS

1.	INTRODU	JCTION	1-1
	1.1.	BACKGROUND	1-1
	1.2.	DESCRIPTION OF DIOXIN-LIKE COMPOUNDS	1-2
	1.3.	TOXICITY EQUIVALENCY FACTORS	1-3
	1.4.	OVERALL COMMENTS ON THE USE OF VOLUME IV OF THE DIOX	IN
		EXPOSURE DOCUMENT	1-6
	1.5.	NOTES ON THE USE OF PROCEDURES IN VOLUME IV	1-6
	REFE	RENCES FOR CHAPTER 1	. 1-10
2.	ESTIMAT	TING EXPOSURES AND RISKS	2-1
	2.1.	INTRODUCTION	
	2.2.	EXPOSURE EQUATION	
	2.3.	CANCER AND NON-CANCER RISK ASSESSMENT	
		2.3.1. Cancer Risk Assessment	2-4
		2.3.2. Evaluating Non-Cancer Effects	
	2.4.	THE TOXIC EQUIVALENCY PROCEDURE	2-6
	2.5.	PROCEDURE FOR ESTIMATING EXPOSURE	
	2.6.	STRATEGY FOR DEVISING EXPOSURE SCENARIOS	. 2-10
	2.7.	EXPOSURE PATHWAYS AND PARAMETERS	. 2-13
		2.7.1. Soil Related Exposures	. 2-14
		2.7.1.1. Soil Ingestion	. 2-14
		2.7.1.2. Soil Dermal Contact	. 2-15
		2.7.2. Vapor and Dust Inhalation	. 2-17
		2.7.3. Water Ingestion	
		2.7.4. Ingestion of Terrestrial Food Products	. 2-19
		2.7.4.1. Derivation of the Contact Fractions for Beef, Milk,	
		Chicken, Eggs, Vegetables, and Fruits	
		2.7.4.2. Beef Ingestion	
		2.7.4.3. Dairy Ingestion	
		2.7.4.4. Chicken Ingestion	
		2.7.4.5. Egg Ingestion	
		2.7.4.6. Vegetable and Fruit Ingestion	
		2.7.5. Fish Ingestion	
	REFE	RENCES FOR CHAPTER 2	. 2-29

IV-iii March 2000

CONTENTS (continued)

3.	EVAL	UATIN	G ATMOSPHERIC RELEASES OF DIOXIN-LIKE COMPOUNDS
	FROM	I COMI	BUSTION SOURCES
	3.1.	INTRO	DDUCTION
	3.2.	ESTIN	MATING THE EMISSIONS OF DIOXIN-LIKE COMPOUNDS
		FROM	I ANTHROPOGENIC COMBUSTION SOURCES
			A Strategy for Generating Emission Factors 3-4
			Use of Homologue and Congener-Specific Profiles to Estimate
			Emission Factors
			3.2.2.1 Using Congener Profiles to Convert Total CDD/F 3-8
			3.2.2.2 Estimating Congener-Specific Emissions when no Congener
			Profiles are Available
		3.2.3.	Estimation of Emissions of Dioxin-Like Compounds from the
			Hypothetical Incinerator
		3.2.4.	Estimation of the Vapor Phase/Particle Phase Partitioning of Emissions
			of Dioxin-Like Compounds
			3.2.4.1. Vapor Phase/Particulate Phase Inferences from Stack
			Measurements
			3.2.4.2. Discussion of Vapor/Particle Ratios Derived from Stack
			Testing Methods
			3.2.4.3. Vapor/Particle Partitioning of CDD/Fs from Ambient Air
			Sampling 3-16
			3.2.4.4. Discussion of the Vapor/Particle Partitioning in Ambient
			Air Sampling Studies 3-23
			3.2.4.5. Junge-Pankow Model of Particle/Gas Distribution in
			Ambient Air
			3.2.4.6. Modeling the Vapor/Particle (V/P) Distribution of CDD/Fs . 3-26
			3.2.4.7. Comparison of Measured and Modeled Vapor/Particle
			Distributions for CDD/Fs
			3.2.4.8. Discussion of Monitored and Modeled Results for CDD/Fs . 3-31
			3.2.4.9. Discussion of Vapor/Particle Partitioning
		3.2.5.	Estimation of the Concentration of Dioxin-Like Compounds in
			Incineration Ash
	3.3.		ISPERSION/DEPOSITION MODELING OF THE STACK GAS
			SIONS OF DIOXIN-LIKE COMPOUNDS
		3.3.1.	Basic Physical Principles Used to Estimate Atmospheric
			Dispersion/Deposition of Stack Emissions
			Estimation of Dry Surface Deposition Flux
			Estimation of the Particle Size Distribution in the Stack Emissions 3-42
			Estimation of Wet Deposition Flux 3-44
		3.3.5.	Using ISCST3 to Model Emissions of Particles and Vapors 3-46

IV-iv March 2000

CONTENTS (continued)

	3.4.	RESULTS OF THE AIR DISPERSION MODELING OF CONGENER-
		SPECIFIC EMISSIONS FROM THE HYPOTHETICAL ORGANIC
		WASTE INCINERATOR 3-47
	3.5.	REVIEW OF PROCEDURES FOR ESTIMATING SITE-SPECIFIC
		IMPACTS FROM A STACK EMISSION SOURCE 3-50
	REFI	ERENCES FOR CHAPTER 3 3-52
4.	ESTI	MATING EXPOSURE MEDIA CONCENTRATIONS 4-1
	4.1.	INTRODUCTION 4-1
	4.2.	BACKGROUND FOR SOLUTION ALGORITHMS
	4.3.	ALGORITHMS FOR THE SOIL CONTAMINATION SOURCE
		CATEGORY 4-7
		4.3.1. Surface Water and Sediment Contamination 4-8
		4.3.2. Exposure Site Soil Concentrations 4-23
		4.3.3. Vapor- and Particle-Phase Air Concentrations 4-31
		4.3.4. Biota Concentrations
		4.3.4.1. Fish Concentrations
		4.3.4.2. Vegetation Concentrations 4-49
		4.3.4.3. Beef and Milk Concentrations
		4.3.4.4. Chicken and Egg Concentrations 4-78
		4.3.5. Specific Cases of Soil Contamination
		4.3.5.1. Landfills Receiving Ash from Municipal Waste
		Incinerators
		4.3.5.2. Land Application of Sludge from Pulp and Paper Mills 4-92
		4.3.5.3. Sites Studied in the National Dioxin Study 4-94
	4.4.	ALGORITHMS FOR THE STACK EMISSION SOURCE CATEGORY 4-97
		4.4.1. Steady-State Soil Concentrations 4-98
		4.4.2 Surface Water Impacts
	4.5.	ALGORITHMS FOR THE EFFLUENT DISCHARGE SOURCE
		CATEGORY 4-105
		4.5.1. The Simple Dilution Model
	REF	ERENCES FOR CHAPTER 4 4-116

IV-v March 2000

CONTENTS (continued)

5.	DEMONS	TRATIO	N OF M	IETHODOLOGY	. 5-1
	5.1.	INTRO	DUCTIO	ON	. 5-1
	5.2.	STRAT	EGIES I	FOR DEVISING EXPOSURE SCENARIOS	. 5-2
	5.3.	EXAMI	PLE EX	POSURE SCENARIOS	. 5-8
	5.4.	EXAMI	PLE CO	MPOUNDS	5-12
	5.5.	SOURC	E TER	MS	5-13
	5.6.	RESUL	TS		5-19
		5.6.1.	Observa	tions Concerning Exposure Media Concentrations	5-20
		5.6.2.	Observa	tions Concerning LADD Exposure Estimates	5-27
	5.7.	HEALT	H RISK	DEMONSTRATIONS	5-30
	REFE	RENCES	FOR C	HAPTER 5	5-31
6.	USER	CONSIL	DERATI	IONS	. 6-1
	6.1.			ONON	
	6.2.	CATEG	GORIZA	TION OF METHODOLOGY PARAMETERS	. 6-1
	6.3.	SENSIT	TIVITY	ANALYSIS	. 6-7
		6.3.1. I	Limitatio	ons of the Sensitivity Analysis Exercises	. 6-7
		6.3.2. I	Methodo	ology Description and Parameter Assignments	6-10
					6-23
		(6.3.3.1.	Estimation of Vapor-Phase and Particle-phase Air	
				Concentrations Distant from a Site of Soil Contamination	6-23
		(6.3.3.2.	Estimation of Soil Erosion Impacts to Nearby Sites of	
				Exposure	6-25
		(6.3.3.3.	Estimation of Soil Erosion Impacts to Nearby Surface	
				Water Bodies	6-27
		(6.3.3.4.	Vapor-Phase Transfers and Particle-Phase Depositions to	
				Above Ground Vegetation	
				Estimation of Below Ground Vegetation Concentrations	6-33
		(6.3.3.6.	Beef Fat Concentration Estimation in the Soil Contamination	
				and Stack Emission Source Categories	6-34
		(6.3.3.7.	Impact of Distance from the Stack Emission Source on	- 05
				Concentrations in Soil, Vegetables, and Beef Fat	6-37
		(6.3.3.8.	Water and Fish Concentrations Resulting from Effluent	
				Discharges	6-38
		(6.3.3.9.	Water and Fish Concentrations Resulting from Stack	<i>c</i> 20
				Emissions	
	- 4			nds from the Sensitivity Analysis Testing	
	6.4.			CE CONSIDERATIONS	
	REFE	RENCES	FOR C	HAPTER 6	6-48

IV-vi March 2000

CONTENTS (continued)

MOD	EL CON	MPARISONS AND MODEL VALIDATIONS	. 7-1
7.1.			
7.2.	MODI	EL COMPARISON EXERCISES	. 7-3
	7.2.1.	Evaluation of Alternative Air-to-Leaf Modeling Approaches	. 7-3
		7.2.1.1. The Field Data	. 7-4
		7.2.1.2. Model Descriptions and Application to the Field Data	. 7-4
		7.2.1.3. Results and Discussion of the Air-to-Leaf Model	
		Comparison Exercise	. 7-9
		7.2.1.4. Literature Comparisons of Air-to-Plant Modeling	
		Approaches	7-14
	7.2.2.	~ · · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	7-16
	7.2.3.		
			7-19
	7.2.4.	e 11	
			7-24
	7.2.5.		
	7.0.6		7-37
	7.2.6.		7 40
7.2	MODI		
1.3.			
		÷ · · · · · · · · · · · · · · · · · · ·	7-50
	1.3.2.		7 52
	722		
		=	
			1-37
	7.3.0.		7-63
	737		7 03
	7.5.71	1	7-68
	7.3.8.	_	
		-	7-90
		· · · · · · · · · · · · · · · · · · ·	
		for Semivolatile Compounds Other Than Dioxin	7-96
	7.1.	7.1. INTRO 7.2. MODI 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.3. MODI 7.3.1. 7.3.2. 7.3.3. 7.3.4. 7.3.5. 7.3.6. 7.3.7.	7.2.1 Evaluation of Alternative Air-to-Leaf Modeling Approaches 7.2.1.1 The Field Data 7.2.1.2 Model Descriptions and Application to the Field Data 7.2.1.3 Results and Discussion of the Air-to-Leaf Model Comparison Exercise 7.2.1.4 Literature Comparisons of Air-to-Plant Modeling Approaches 7.2.2 An Alternate Modeling Approach for Estimating Water Concentrations Given a Steady Input Load from Overland Sources 7.2.3 Estimating Fish Tissue Concentrations Based on Water Column Concentrations Rather than Bottom Sediment Concentrations 7.2.4 Other Modeling Approaches and Considerations for Air Concentrations Resulting from Soil Volatilization 7.2.5 Alternate Models for Estimating Plant Concentrations from Soil Concentrations 7.2.6 Alternate Modeling Approaches for Estimating Beef and Milk Concentrations 7.3.1 The Impact of Dioxin Soil Contamination to Nearby Soils 7.3.2 Soil Concentrations and Concurrent Concentrations in Bottom Sediments and Fish 7.3.3. Other Bottom Sediment Concentration Data 7.3.4 Data on Water Concentrations of Dioxin-Like Compounds 7.3.5 Data on Fish Concentrations in the Literature 7.3.6 Impact of Pulp and Paper Mill Effluent Discharges on Fish Tissue Concentrations 7.3.7 Air Dispersion and Soil Concentration Modeling Around an Incinerator Known to be Emitting Large Amounts of Dioxins 7.3.7.1 Modeling Procedures 7.3.7.2 Results and Discussions 7.3.7.3. Discussion and Concluding Remarks 7.3.8 Air-to-Soil and Soil-to-Air Modeling 7.3.9 Transfer of Dioxins From Soils to Below Ground Vegetables 7.3.10 Impacts of Contaminated Soils to Vegetation 7.3.11. Comparison of Measured and Modeled Vapor/Particle Distributions

IV-vii March 2000

CONTENTS (continued)

		7.3.12. An Update of the Air-to-Beef Model Validation Exercise 7-98
		7.3.13. Expansion of the Terrestrial Food Chain Model for Dioxins and
		Applications to other Foodstuffs in the United Kingdom 7-109
		7.3.14. Beef and Milk Fat Concentrations when Soil is the Source of
		Contamination
	REFE	ERENCES FOR CHAPTER 7 7-112
8.	LINC	ERTAINTY
0.		INTRODUCTION
	8.1.	A DISCUSSION OF UNCERTAINTY ISSUES ASSOCIATED WITH THE
	8.2.	
		USE OF ISCST3 FOR TRANSPORT AND DISPERSION OF STACK
		EMITTED CONTAMINANTS 8-3
	8.3.	UNCERTAINTIES AND VARIABILITIES WITH CHEMICAL-SPECIFIC
		MODEL PARAMETERS AND ASSUMPTIONS 8-7
	8.4.	UNCERTAINTIES ASSOCIATED WITH EXPOSURE PATHWAYS 8-11
		8.4.1. Lifetime, Body Weights, and Exposure Durations 8-12
		8.4.2. Soil Ingestion Exposure
		8.4.3. Soil Dermal Contact Pathway 8-16
		8.4.4 Water Ingestion
		8.4.5. Fish Ingestion Exposure
		8.4.6. Vapor and Particle Phase Inhalation Exposures 8-22
		8.4.7. Fruit and Vegetable Ingestion 8-26
		8.4.8. Ingestion of Terrestrial Animal Food Products Including Beef, Milk,
		Chicken, and Eggs
	8.5.	USE OF PROBABILISTIC TECHNIQUES FOR ASSESSING EXPOSURE
	0.0.	TO DIOXIN-LIKE COMPOUNDS
	REFE	ERENCES FOR CHAPTER 8 8-38
	1111	<u> </u>

IV-viii March 2000

TABLES

Table 1-1.	The TEF scheme for I-TEQ _{DE}	1-12
Table 1-2.	The TEF scheme for dioxin-like coplanar PCBs, as determined by the	
	World Health Organization in 1994	1-13
Table 1-3.	The TEF scheme for TEQ_{DFP} -WHO ₉₈	1-14
Table 2-1.	Summary of exposure pathway parameters selected for the demonstration	
	scenarios of Chapter 5	2-32
Table 2-2.	Percent weight losses from preparation of various meats	2-35
Table 3-1.	The number of dioxin-like and total congeners within dioxin, furan, and	
	coplanar PCB homologue groups	3-61
Table 3-2.	Emission factors and average emissions used for the hypothetical incinerator .	3-62
Table 3-3.	Percent distribution of dioxins and furans between vapor-phase (V) and	
	particulate-phase (P) as interpreted by various stack sampling methods	
	$(4-D = tetraCDD; 4-F = tetraCDF) \dots $	3-63
Table 3-4.	Review of air monitoring data on the percentage of measured dioxins and	
	furans which are in the particle phase (4-D = tetraCDD; 4-F = tetraCDF)	3-65
Table 3-5.	Values of θ , V_T , and TSP in different air regimes	3-66
Table 3-6.	Data for calculation of the liquid subcooled vapor pressure, p° _L , at 20 °C, and	
	final p°_{L} for the dioxin-like congeners	3-67
Table 3-7.	Particle fractions, φ, in four airsheds at 20°C for the dioxin-like congeners	3-68
Table 3-8.	Regression parameters slope m and intercept b for Equation (3-5),	
	$\text{Log } K_p = \text{m Log } p_L^{\circ} + \text{b}$, based on field measurements of particle/gas	
	distributions for CDD/Fs	3-69
Table 3-9.	Comparison of monitored and modeled particulate percentage for CDD/F	
	homologues at 20°C	3-70
Table 3-10.	Factors that influence the dry deposition removal rate in the atmosphere	3-71
Table 3-11.	A summary of dry deposition velocities for particles	3-72
Table 3-12.	Generalized particle size distribution (µm), and proportion of available	
	surface area, in particulate emissions from incineration	3-73
Table 3-13.	Unit wet deposition scavenging coefficients per particle diameter category	
	(micrometers) used in the example ISCST3 analysis, expressed as	
	1/(sec-mm/hr)	3-74
Table 3-14.	Emission of CDD/Fs (g/sec) from the hypothetical incinerator	3-75
Table 3-15.	Modeling parameters used in the ISCST3 modeling of CDD/F emissions	
	from the hypothetical incinerator	3-76
Table 3-16.	Predicted average vapor-phase concentrations of CDD/Fs (pg/m³; columns	
	are downwind distance in km)	3-77
Table 3-17.	Predicted average particle-phase concentrations of CDD/Fs (pg/m³; columns	
	are downwind distance in km)	3-78

IV-ix March 2000

TABLES (continued)

Table 3-18.	Predicted annual dry deposition of particle-bound CDD/Fs (pg/m²-yr; columns are downwind distance in km)
Table 3-19.	Predicted annual wet deposition of particle-bound CDDs/Fs (pg/m²-yr;
	columns are downwind distance in km)
Table 4-1.	Available Biota to Sediment Accumulation Factors, BSAF, for dioxin-like
	compounds
Table 4-2.	Available Biota to Sediment Accumulation Factors, BSAF, for PCBs 4-135
Table 4-3.	Data and parameters used to determine the part of the plant concentration
	which was due to the deposition of particle bound dioxins (see below table
	for definition of columns)
Table 4-4.	Development of the B _{vpa} using data of Welsch-Pausch, et al (1995) compared
	against the B_{vpa} as developed in EPA (1994) (see below table for column
	definitions)
Table 4-5.	Ratios of dioxins and furans in milk fat (MF) and body fat (BF) to
	concentrations in diets of farm animals
Table 4-6.	Ratios of PCBs in milk fat (MF) and body fat (BF) to concentrations in
	diets of lactating cows
Table 4-7.	BCFs for liver, adipose, thigh meat, and eggs calculated from the Cal-EPA
	experiments
Table 4-8.	Chicken and egg BCFs for Aroclor mixtures
Table 4-9.	Ranges of concentrations of PCDDs, PCDFs, and PCBs in municipal waste
	combustor ash (results in ng/g or ppb; ND = Not detected; NR = not reported;
	Tr = trace; DL between 0.01 and 0.1 ng/g)
Table 5-1.	Fate and transport parameters for the dioxin-like congeners demonstrated in
	this chapter
Table 5-2.	Summary of key source terms for the background scenarios, 1 and 2 5-35
Table 5-3.	Summary of key source terms for Scenarios 4 and 5, the stack emission
m 11 5 4	demonstration scenarios
Table 5-4.	WHO ₉₈ -TEQ _{DF} environmental and exposure media concentrations for the
	background conditions scenarios, #1 and #2, and the stack emissions
T-1-1- 5 5	demonstration scenarios, #4 and #5
Table 5-5.	Environmental and exposure media concentrations for 2,3,7,8-TCDD
	("dioxin"), 2,3,4,7,8-PCDF ("furan") and 2,3,3',4,4',5,5'-HPCB (PCB) for
	the soil contamination demonstration, scenario #3, and the effluent discharge demonstration, scenario #6 (NA = not applicable)
Table 5-6.	' 11 '
Table 3-0.	Individual congener and Toxic Equivalent (WHO ₉₈ -TEQ _{DF}) concentrations for predicted beef concentration for the background high scenario, scenario # 2,
	and the stack emission high scenario, scenario 5
	and the stack emission mgn scenario, scenario 3

IV-x March 2000

TABLES (continued)

Table 5-7.	Lifetime average daily doses, LADD, of Toxic Equivalents (TEQs), for the	
	background scenarios, #1 and #2, and for the stack emission scenarios, #4 and #5	-40
Table 5-8.	Lifetime average daily doses, LADD, for 2,3,7,8-TCDD ("dioxin"),	- -0
	2,3,4,7,8-PCDF ("furan") and 2,3,3',4,4',5,5'-HPCB (PCB) for the soil	
	contamination demonstration, scenario #3, and the effluent discharge	
		-42
Table 5-9.	Lifetime Average Daily Doses, LADD, of Toxic Equivalents (WHO ₉₈ -TEQ _{DE})	
	for exposure pathways evaluated outside of the scenarios for background	
		-43
Table 5-10.	Lifetime Average Daily Doses, LADD, of 2,3,7,8-TCDD ("dioxin"),	
	2,3,4,7,8-PCDF ("furan") and 2,3,3',4,4',5,5'-HPCB ("PCB") for exposure	
	pathways evaluated outside of the scenarios for the soil contamination and	
		-44
Table 5-11.	Relative magnitude of all exposure pathways evaluated for the background	
	setting and the stack emission, high exposure scenario setting (see table	
	bottom for notes)	-45
Table 6-1.	Parameters used to estimate exposure media concentrations for this	
		-51
Table 6-2.	Contribution of above ground vegetation concentrations of 2,3,7,8-TCDD	
	from air-to-leaf transfers and particulate depositions 6	-59
Table 7-1.	Observed data for the air-to-plant model comparison exercise	123
Table 7-2.	Model results comparing the EPA vapor transfer model and the Vapor	
	Deposition Model with the field data for 2,3,7,8-TCDD	124
Table 7-3.	Model parameters used in the Hwang and the alternate volatilization models	
	tested in this comparison exercise	125
Table 7-4.	Results of model volatilization comparison exercise	126
Table 7-5.	Summary of off-site soil contamination from Tier 1 and 2 sites of the	
	National Dioxin Study 7-1	127
Table 7-6.	Description of soil, sediment, and fish sampling program of dioxin-like	
	compounds undertaken by the Connecticut Department of Environmental	
	Protection	128
Table 7-7.	Frequency of non-detects and detection limits for soil, sediment, and fish,	
	for three congeners in the Connecticut Department of Environmental	
	Protection data set	132
Table 7-8.	Results for Connecticut Department of Environmental Protection sampling,	
	including soil, sediment and fish concentrations, and the key concentration	
	ratios of sediment to soil and the Biota Sediment Accumulation Factor	
	(BSAF) ratio 7-1	133

IV-xi March 2000

TABLES (continued)

Table 7-9.	Model parameters and results for effluent discharge model validation	
	testing	7-136
Table 7-10.	ISCST3 and soil model input assumptions and parameters	7-142
Table 7-11	Comparison of observed and modeled total CDD/F concentration increments	
	at the urban monitoring stations	7-143
Table 7-12.	Comparison of observed and modeled homologue and TEQ concentrations	
	at station SE-3 using on-site meteorological data for model input	7-144
Table 7-13.	Results of ISCST3 deposition and soil prediction modeling, comparing	
	measured concentrations for clusters of soil samples with modeled	
	concentrations assuming either the 1992 or the 1994 stack tests	7-145
Table 7-14.	Results of the air-to-soil and soil-to-air model testing	7-146
Table 7-15.	Data and results of the soil to below ground vegetable validation exercise	
Table 7-16.	Summary of plant concentration versus soil concentration data for	
	2,3,7,8-TCDD	7-148
Table 7-17.	Parameters for the empirical relationship relating the sub-cooled liquid	
	vapor pressure, p_{L}° , to the particle/gas partition coefficient, K_{p} , of	
	semivolatile organic compounds (SOC)	7-152
Table 7-18.	Summary of modeling changes from the 1994 air-to-beef model validation	
	exercise to the present update	7-153
Table 7-19.	Comparison of air concentration profiles used in the 1994 air-to-beef model	
	validation compared against the current air profiles	7-154
Table 7-20.	Comparison of predicted leafy vegetation samples of the current, revised	
	validation exercise with the previous predictions of leafy vegetations and	
	several observations in the literature (units are pg/g dry weight)	7-155
Table 7-21.	Results of the 1994 air-to-beef model validation exercise compared against	
	results from the current air-to-beef model validation exercises	7-156
Table 8-1.	Uncertainties associated with the lifetime, body weight, and exposure	
	duration parameters	. 8-42
Table 8-2.	Uncertainties associated with the soil ingestion pathway	. 8-43
Table 8-3.	Uncertainties associated with the dermal exposure pathway	. 8-44
Table 8-4.	Uncertainties associated with the water ingestion pathway	. 8-45
Table 8-5.	Uncertainties associated with the fish ingestion pathway	. 8-46
Table 8-6.	Uncertainties and sensitivities associated with estimating vapor and	
	particle-phase air concentrations from contaminated soils	. 8-47
Table 8-7.	Uncertainties associated with vegetable/ fruit ingestion exposure algorithms.	. 8-49
Table 8-8.	Uncertainties associated with the terrestrial animal food pathways	. 8-50
Table 8-9.	Distributions for a Monte Carlo exercise which developed soil cleanup	
	levels at residential and industrial sites	. 8-51

IV-xii March 2000

TABLES (continued)

Table 8-10.	Summary of Monte Carlo distributions used in a fish consumption	
	assessment	8-52
Table 8-11.	Summary of Monte Carlo distributions used in food chain study	8-53
Table 8-12.	Summary of parameter distributions used for modeling terrestrial fruits and	
	vegetables for human consumption in a Monte Carlo exercise	8-54

IV-xiii March 2000

FIGURES

Figure 1-1.	Chemical structure of 2,3,7,8-TCDD and related compounds 1-15
Figure 3-1.	Example of a congener and a homologue profile from a sewage sludge incinerator
Figure 3-2.	The relationships between the log of liquid sub-cooled vapor pressure, p_L° ,0 and the particle-gas partition coefficient, K_p , (figure (a)), and between p_L° and modeled (as indicated by "J-P" in figure (b)) and measured percent particulate-phase in the ambient air (measurements from Eitzer &
Figure 3-3.	Comparison of measured particulate percentages of PCDD/F on a homolog basis to predictions of the Junge-Pankow model as a function of the
	sub-cooled liquid vapor pressure, p_L° , of the homolog groups 3-83
Figure 4-1.	Diagram of the fate, transport, and transfer relationships for the
E: 4.2	soil contamination source category
Figure 4-2.	Diagram of the fate, transport, and transfer relationships for the stack emission source category
Figure 4-3.	emission source category
riguie 4-3.	discharge source category
Figure 4-4.	Watershed delivery ratio, SD _w , as a function of watershed size 4-149
Figure 6-1.	Results of sensitivity analysis of algorithms estimating exposure site vapor
1180110 0 11	phase air concentrations resulting from a distant contaminated soil site 6-60
Figure 6-2.	Results of sensitivity analysis of algorithms estimating exposure site particle
U	phase air concentrations resulting from a distant contaminated soil site 6-61
Figure 6-3.	Results of sensitivity analysis of algorithms estimating exposure site soil
_	concentrations resulting from erosion from a site of soil contamination 6-62
Figure 6-4.	Results of sensitivity analysis of algorithms estimating surface water impacts, including sediment, water, and fish concentrations, resulting from a site of
	soil contamination
Figure 6-5.	Results of sensitivity analysis of algorithms estimate above ground
	vegetation concentrations due to vapor phase transfers 6-64
Figure 6-6.	Results of sensitivity of algorithms estimating above ground vegetation
	concentrations from deposition of particle-bound dioxins 6-65
Figure 6-7.	Impact of vapor/particle partitioning on vegetation concentrations in the
F' 60	stack emission source category
Figure 6-8.	Results of sensitivity analysis of algorithms estimating below ground
E: (0	vegetable concentrations in the soil contamination source category 6-67
Figure 6-9.	Results of sensitivity analysis of algorithms estimating beef fat
Eiguro 6 10	concentrations in the soil contamination source category
Figure 6-10.	Results of sensitivity analysis of algorithms estimating beef fat
	concentrations in the stack emission source category 6-69

IV-xiv March 2000

FIGURES (continued)

Figure 6-11.	Impact of distance from the stack emission source to soil, vegetable, and	
	beef fat concentrations	. 6-70
Figure 6-12.	Results of sensitivity analysis of algorithms estimating surface water	
	and fish concentrations resulting from effluent discharges	. 6-71
Figure 6-13.	Results of sensitivity analysis of algorithms estimating surface water	
	and fish concentrations resulting from stack emissions	. 6-72
Figure 7-1.	Comparison of observed and predicted grass concentrations of dioxin and	
	furan congeners for the EPA and the scavenging models at the rural site	7-157
Figure 7-2.	Comparison of observed and predicted grass concentrations of dioxin and	
	furan congeners for the EPA and the scavenging models at the industrial site.	7-158
Figure 7-3.	The observed scavenging coefficient (grass concentration over air	
	concentration) calculated from the rural site data	7-159
Figure 7-4.	Comparison of observed and predicted deposition at the rural and industrial	
	sites	7-160
Figure 7-5.	Schematic of effluent discharge model showing all parameter inputs and	
	observed fish concentrations	7-161
Figure 7-6.	Comparison of predicted and observed fish tissue concentrations for validation	n
	of the effluent discharge model	7-162
Figure 7-7.	Site map showing locations of soil and air samples in the vicinity of the	
	Columbus Municipal Solid Waste-To-Energy (CMWSTE, abbreviated WTE	
	above) Facility	7-163
Figure 7-8.	Isoline figures of predicted air concentrations overlain by measured air	
	concentrations of TCDD, OCDD, and TEQ (pg/m³) when using the "on-site"	
	meteorological data set (sub-figures a, b, and c) and when using the "airport"	
	meteorological data set (sub-figures d, e, and f)	7-164
Figure 7-9.	Isoline figures of predicted soil concentrations of TCDD, OCDD, and TEQ	
	(sub-figures a, d, g) compared against isoline figures of measured soil	
	concentrations using the 1992 stack emission test (sub-figures b, e, and h)	
	and the 1994 stack emission test (sub-figures c, f, and i)	7-166
Figure 7-10.	Comparison of measured and predicted particulate percentages of PAHs in	
	urban and rural air	7-167
Figure 7-11.	Comparison of measured and predicted particulate percentages of PCBs and	
	organochlorine pesticides in urban and rural air	7-168
Figure 7-12.	Overview of model to predict beef concentrations from air concentrations	7-169

IV-xv March 2000